Keras

很早以前就听过人工智能,前几年的Alphogo战胜韩国围棋高手,将人工智能再次炒热,我们都知道这是一种学习的过程,具体怎么实现呢?就是用到Keras,Keras是由纯python编写的基于theano/tensorflow的深度学习框架。 Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果。Keras的核心数据结构是“模型”,模型是一种组织网络层的方式。Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈。

主要概念

1)符号计算

Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都是一个“符号式”的库。符号计算首先定义各种变量,然后建立一个“计算图”,计算图规定了各个变量之间的计算关系。

2)张量

张量(tensor),可以看作是向量、矩阵的自然推广,用来表示广泛的数据类型。张量的阶数也叫维度。

0阶张量,即标量,是一个数。

1阶张量,即向量,一组有序排列的数

2阶张量,即矩阵,一组向量有序的排列起来

3阶张量,即立方体,一组矩阵上下排列起来

4阶张量……
依次类推

后面还要了解date_format、函数式模型、batch(梯度下降)、epochs,接下来还要了解的概念:

  • 有监督学习,无监督学习,分类,聚类,回归
  • 神经元模型,多层感知器,BP算法
  • 目标函数(损失函数),激活函数,梯度下降法
  • 全连接网络、卷积神经网络、递归神经网络
  • 训练集,测试集,交叉验证,欠拟合,过拟合
  • 数据规范化

 

7819039720

未来所有美好的岁月里,不将就,然后成为更好的自己~愿所有的美好与温暖都会如约而至~😋😋